Caudal vertebral body articular surface morphology correlates with functional tail use in anthropoid primates.
نویسندگان
چکیده
Prehensile tails, capable of suspending the entire body weight of an animal, have evolved in parallel in New World monkeys (Platyrrhini): once in the Atelinae (Alouatta, Ateles, Brachyteles, Lagothrix), and once in the Cebinae (Cebus, Sapajus). Structurally, the prehensile tails of atelines and cebines share morphological features that distinguish them from nonprehensile tails, including longer proximal tail regions, well-developed hemal processes, robust caudal vertebrae resistant to higher torsional and bending stresses, and caudal musculature capable of producing higher contractile forces. The functional significance of shape variation in the articular surfaces of caudal vertebral bodies, however, is relatively less well understood. Given that tail use differs considerably among prehensile and nonprehensile anthropoids, it is reasonable to predict that caudal vertebral body articular surface area and shape will respond to use-specific patterns of mechanical loading. We examine the potential for intervertebral articular surface contour curvature and relative surface area to discriminate between prehensile-tailed and nonprehensile-tailed platyrrhines and cercopithecoids. The proximal and distal intervertebral articular surfaces of the first (Ca1), transitional and longest caudal vertebrae were examined for individuals representing 10 anthropoid taxa with differential patterns of tail-use. Study results reveal significant morphological differences consistent with the functional demands of unique patterns of tail use for all vertebral elements sampled. Prehensile-tailed platyrrhines that more frequently use their tails in suspension (atelines) had significantly larger and more convex intervertebral articular surfaces than all nonprehensile-tailed anthropoids examined here, although the intervertebral articular surface contour curvatures of large, terrestrial cercopithecoids (i.e., Papio sp.) converge on the ateline condition. Prehensile-tailed platyrrhines that more often use their tails in tripodal bracing postures (cebines) are morphologically intermediate between atelines and nonprehensile tailed anthropoids.
منابع مشابه
Title Tail length estimation from sacro-caudal skeletal morphology in catarrhines
Tail morphology in primates is important for interpreting functional adaptation and phylogeny. Tail length is probably the most remarkable trait. Establishing usable methods to predict the tail length of extinct primates is a part of the basis to reconstruct primate evolution, particularly of hominoids. Previous studies revealed that sacral morphology often predicts tail length. However, most o...
متن کاملTeleost fishes typically possess a homocercal caudal fin with a symmetrical morphology in which the dorsal and ventral lobes
a symmetrical morphology in which the dorsal and ventral lobes of the tail fin are the same size and project posteriorly beyond the axis of the vertebral column. In contrast, most elasmobranch fishes and some primitive actinopterygian fishes possess a heterocercal caudal fin with an asymmetrical morphology in which the ventral lobe of the fin is smaller than the dorsal lobe and the vertebral co...
متن کاملThe Evolution of the Primate Prehensile Tail
The evolution of the prehensile tail illustrates the impact habitat can have on structural traits. Prehensile primates are able to support their entire body weight using only their tail, which opens up new feeding opportunities in their arboreal environments. This trait evolved separately in two families of New World monkeys. A transitional behaviour in its proposed evolutionary mechanism is ta...
متن کاملEvolution and Allometry of Calcaneal Elongation in Living and Extinct Primates
Specialized acrobatic leaping has been recognized as a key adaptive trait tied to the origin and subsequent radiation of euprimates based on its observed frequency in extant primates and inferred frequency in extinct early euprimates. Hypothesized skeletal correlates include elongated tarsal elements, which would be expected to aid leaping by allowing for increased rates and durations of propul...
متن کاملThree-dimensional analysis of scale morphology in bluegill sunfish, Lepomis macrochirus.
Fish scales are morphologically diverse among species, within species, and on individuals. Scales of bony fishes are often categorized into three main types: cycloid scales have smooth edges; spinoid scales have spines protruding from the body of the scale; ctenoid scales have interdigitating spines protruding from the posterior margin of the scale. For this study, we used two- and three-dimens...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of morphology
دوره 275 11 شماره
صفحات -
تاریخ انتشار 2014